
* . b .

I

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

ENGINEERING
TNGINEERING

VGINEERING
XNEERING

'NEERING
'EERING

FRING
RING

ING
.JG

-7

~~

b

. . i

SIMULATION AND ANALYSIS OF OPTIMAL
SELF-PACED SECOND ORDER CONTROL
SYSTEMS

Philip A. Hardin

DSR 70283-2

July 1967

Engineering Projects Laboratory
Department of Mechanical Engineering
Massachusetts Institute of Technology

DSR 70283-2

- SIMULATION AND ANALYSIS O F OPTIMAL SELF-PACED SECOND
ORDER CONTROL SYSTEMS '

Phil ip A. Hardin

July 1967

I ,

NASA-!Grant NsG-107-61 - . '

I '

TABLE OF CONTENTS

LIST OF FIGURES ii

ABSTRACT iii
I. A LOCAL VARIATION TECHNIQUE O F

BELLMAN'S DYNAMIC PROGRAMING 1

A, Introduction 1

B. Description of the Basic Procedure 1

C. Advantages and Disadvantages and

Procedures to Help Overcome the

Disadvantages of the Method 5
D. Conclusions and Recornmenda tions 6

11. THE SIMULATION AND ANALYSIS OF SECOND-

ORDER OPTIMAL SELF-PACED CONTROL

SYSTEMS

A .' Introduction

B. The Self-Paced System Investigated

1. Cost Functions

2. The Complete System

C. The Simulation

1, Bellman's Dynamic Programing

a,
bo Simulation Results

Special Aspects of the Program

2. The Local Dynamic P rogram

The Gradient Method of Simulation D.
111. CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE STUDY

NOTATION LIST FOR CHAPTER 11-
BIBLIOGRAPHY

7

7

9

9
10

12

12

14

16
18

21

22

23

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4
FIGURE 5

FIGURE 6
FIGURE 7

LIST OF FIGURES

2

2

4

11

15

17

20

ABSTRACT

This report covers two topics, and is divided into two

sections.

Programing.

second-order self-paced control system. Self-pacing

implies ability to control velocity in forward a s well a s

la teral direction; where the inputs a r e given a s values of

two space coordinates and have no time dependence.

The f i r s t is a local variation of Bellman's Dynamic

The second topic is the simulation of a

Section I
The local variation of the Dynamic Programing algorithm

i s described.

in respect to the computing equipment available in L966.
major advantage i s that the grid upon which a continuous

system is simulated can be made severa l o rde r s of magnitude

smaller than when using Bellman's Dynamic Programing to

simulate the same system.

this method i s a local method, and i s subject to getting trapped

i n local minima.

difficulty is described.

Its disadvantages and advantages a r e discussed

The

The major disadvantage is that

A procedure for overcoming this

Section I1
A second-order, optimal, self-paced control system was

simulated using the I. B. M
Computation Center.

7094 computer a t the M. I. T.

The methods of simulation used were:

a) Bellman 's Dynamic Programing

b) a modification of a) that u s e s the Dynamic

Programing algorithm to consider points around

a nominal, non-optimal t ra jectory instead of all

points in the state space (a Local variation of the

regular Dynamic Programing) and

\c) a c lass ical gradient analysis.

Methods b) and c) were used to achieve grea te r resolution

than was possible with method a) .

The method using Bellman's Dynamic Programing

produced satisfactory resul ts , although the grid on which the

self-paced system was simulated was very coarse. Method

b) increased the grid resolution, and produced bet ter (lower

cost) trajectories.

could become trapped in Local minima. The gradient method

of analysis was found to be effective in analyzing only certain

types of self-paced system.

Method b) had one weakness in that it

- iv-

8

I. A LOCAL VARIATION TECHNIQUE

OF BELLMAN'S DYNAMIC PROGRAMING

A . Introduction

While working to simulate the self-paced systems,

i t became apparent that Bellman's Dynamic Programing would

not be sufficient to simulate a continuous second o rde r dynamic

system of two degrees of freedom.

be used was so coarse that the system simulated was unlike

any familiar continuous system.

to overcome the program of the gr id s ize , as lbcal variation of

Bellm&n's Dynamic Programing was thought to be the best

of the methods that were formulated.

convinced the author that the method might have some

app lica tion in other a rea s .

The gr id s ize that had to

When considering methods

Further investigation

B. Description of the Basic Procedure

The regular Dynamic Programing considers a l l points

in a state space and guarantees a n optimal solution in the space

represented. The new method, on the other hand, considers

only a se t of t ra jector ies arounda nominal, non-optimal

trajectory.

regular Dynamic Programing algorithm in this smal le r volume

of the cost space. It then uses this best t r a j e c t o r y a s the new,

non-optimal trajectory.

program makes no change in the las t f'non-optimaL'' trajectory.

The program then terminates, calling this last t ra jectory

optimal for the system.

-
It chooses the best t ra jectory in this se t using the

This process is repeated until the

The following illustration should help c larify the

procedure.

space with the cost axis coming out of the paper and the many

other state variables axes collapsed into the plane of the

paper. Constant cost (contour) Lines have been excluded

The space in Figure 1 is considered as a cos t

- 1 -

0

X

Figure I

10

9

8

7

6

5

4

3

2

1

X

X

-̂A
x-/ x-n
X-A Yo

0
X+A/’

1 I I 1 I I I 1 I i

1 2 3 4 5 6 7 8 9 1 0

Figure 2

-2 -

e

I

I .

f rom the figure for the sake of clari ty.

non-optimal trajectory i s represented by a triangle a t the

(1, 1) point, if the gradient at the (1, 1) point were to lie

parallel to the X = Y line in the plane, the program would

operate in the following manner.

consider a s e t of trajectories enclosed by the square.

the previous ly defined gradient direction, the program will

choose the upper right corner a s the lowest cost point (designated

by the X).

around the X.
centered about the X and be of the same size and orientation

a s the previous square.)

sys tem could consider would be the double X point.

would continue and the next point to be chosen would be the 0 point.

If this point were a local minimum, the program would pick the 0

point on the subsequent t r i a l and then terminate.

Assume the nominat,

The program will

Given

Then it will consider the se t of points in a square

(The second square i s not shown but i t would be

Now the lowest cost point which the

The program

Figure 2 is an example of what the process would look

like when altering the trajectory of a second order system

trying to minimize a function of both time and fuel and moving

from s t a r t to finish in two dimensions while a t the same time

trying to avoid an obstacle.

i s stopped a t the finishing point.

the trajectory marked by the XIS.

trajectory (in several iterations) over to the A trajectory and

finally to the 0 trajectory, which the program sett les on a s

optimal.

nominal non-optimal trajectory (the X ' s) i s shown in Figure 3.

This i s only a representative configuration, but shows which

points the program may consider.

of one interaction is a l so shown (the 0 ' s) .

The system s t a r t s a t r e s t and

The input to the program is

The program moves this

The grid that i s formed around each point of a

A sample output t ra jectory

- 3-

F i g u r e 3

- 4-

C. Advantages and Disadvantages, and Procedures to Help

Overcome the Disadvantages of the Method

The f i r s t problem with Local Dynamic Programing i s

that the program can get caught on ve ry shallow plateaus where

i t cannot determine a cost difference between any of the points

i t i s considering. Of course, the precision to which the cost

function i s known depends mainly on the accuracy afforded by

the available computing machines.

procedure, and i t will find only Local minima.

major restriction to the usefulness of this method.

an operating procedure was developed which overcomes this

objection in par t ,

Second, this i s a Local

This i s a

However,

To overcome the problem of local minima, a Dynamic

Programing program was formulated to find a solution which

i s the best in the space.

values of each state variable that the investigator thinks may

be a coordinate of a minimum in the cost space.)

from the Dynamic Programing can then be used a s the input

to the f i r s t se t of iterations of the local Dynamic Programing

routine.

of i terations be about l/2 (or more) the size of the gr id s ize

of the regular Dynamic Programing. The answer from this

f i r s t set of iterations can then be used a s the input to the

next s e t of iterations of the local Dynamic Programing, with

a grid size one half a s large a s before.

can continue until the answer is refined to any desired de-

gree of precision. The reduction in grid size of only one-

half in each se t of iterations i s suggested because of the

non-Linearities introduced by discretization of the continu-

ous system.

there i s a grea te r chance that the system may become trapped

on a small plateau or in a small local ravine (possibly created

by the discretization of the problem) when happens to be close

to the true minimum.

(This program should include a l l

The answer

It i s suggested that the grid size of this f i r s t s e t

This procedure

If the grid size i s decreased ve ry quickly,

- 5 -

There a r e several propert ies which make this method

bet ter than other minimum finding techniques. The f i r s t and

most important is that the complete procedure, utilizing

the regular Dynamic Programing will find the t rue minimum

of a cost function to any degree of accuracy des i red i f the cost

function is sufficiently smooth. (In dealing with functions

that a r e very i r regular , this procedure will probably yield

good results.)

to calculate no derivatives. A third i s that this method is

absolutely convergent.

(or more) the procedure will find i t (or one of them.)

recommended program procedure a l so allows for the inclusion

of any number of tes ts for local minimum that the investigator

may wish to include.

-

The second property is that this method has

If the cost function has one minimum

The

D. Conclusions and Recommendations

The procedure outlined in this section gives the

investigator the opportunity to get solutions to continuous

control problems to a lmost any degree of accuracy that i s

desired. This i s , of course, under the condition that the cost

function i s sufficiently smooth to allow the regular Dynamic

Programing, on a successively finer grid, to find a solution

sufficiently close to the t rue minimum.

Ideally, one would like a method that could find the

absolute minimum of a cost function that has many Local minima

and is not smooth o r continuous.

-6 -

11. THE SIMULA TTON AND ANALYSIS OF
SECOND-ORDER OPTIMAL SELF-PACED CONTROL SYSTEM

A. Introduction

For the past several years, r e sea rche r s have been in-

ves tigating human behavior using the techniques of conven-

tional control theory,

operator was adapted for two main reasons:

This method of describing the human

1) this procedure produces a fairly accurate description
of experimental results, and

2) the mathematical theory of these systems i s reasonably

well understood.

This procedure assumes that people perform tasks in a forced-

paced mode of behavior, For some tasks, this characterization

is adequate; but for most tasks that people perform, they do so

in a self-paced manner.

Forced paced systems and self-paced systems can be

differentiated a s follows:

I) a forced-paced system has a s independent variables
the sequence of ideal states r, r as a function of

t ime r (t) , and the instantaneous time derivatives of

r , dr/dt, d r/dt , etc.
2 2

2) a self-paced system has as an independent variable a

sequence of ideal states r, but r (t) and the instantan-

eous time derivatives of r, dr/dt, d r/dt , e tc . , a r e

dependent variables.

of space coordinates, io e , , [.] defines a path in

space.

2 2

Often r i s given a s a sequence

- 7-

The following example should help i l lustrate the defini-

A car-dr iver system can be thought of a s a self-paced tion.

system.

winding ones, the dr iver will go fas te r on the straight s t re tches

of road than on the winding parts.

the probability of having an accident small , but he a l so values

his time and does not want to travel too slowly.
. there i s a trade-off between speed (or time consumed in travel)

and the probability of having an accident while traveLing. Were

the speed control taken f rom the dr iver and se t to be constant

throughout the tr ip, the system would be forced-paced.

the speed were se t to be appropriate for the winding sections

of the road, the dr iver would be bored, and probably angry

a t wasting s o much time on the straight sections.

were set to be appropriate for the straight par t s of the road,

the dr iver probably could not negotiate the curves, and most

likely would meet with disaster ,

On a road where there a r e both straight sections and

The dr iver attempts to keep

Consequently,

If

If the speed

From experience, one real izes that the speed a t which

one drives, o r a t which one performs other activit ies, i s

dependent upon many factors. Because these factors a r e dif-

ficult to identify and the interactions among these factors a r e

not well understood, it was considered best to leave modeling

a self-paced control system in t e rms of these "real-world!'

human factors until a f t e r certain fundamental problems were

bet ter understood. For the purpose of this report , the system

was simplified until i t could be reasonably simulated on an

I.B.M. 7094 computer. (The reader who i s interested in

the study of the self-paced car -dr iver system should consult

reference 1.)

The research fo r this repor t was undertaken to provide

a background o r bas i s for modeling the human operator a s a

- 8 -

self-paced system. A s such, this report i s designed to give

investigators some feel for the behavior of self-paced systems

a s well a s algorithms and programs for computing the t ra jec-

tor ies of optimal self-paced systems.

B. The Self-Paced System Investigated

1. Cost Functions

Throughout the research one basic self-paced system

It was used exclusively so that data f rom model was used.

one se t of conditions could be easily compared to that of

another. The cost function used was

where k is a power, and other t e r m s a r e defined in the

Notation List.

to one.

o r zero.

analysis, the cost function was al tered somewhat. The a l te r -

ations and reasons for them will be discussed in the section

describing the gradient method of analysis.

F o r most of the simulation, k was left equal

Raising i ts value tended to keep X and Y equal to one

For the simulation using the gradient method of

There were several other models proposed for the simu-

lation. They were generally of the form

N

*At (2)
2 - *

n=O, 1

where k, b , and L a r e constants. This cost function is more

realist ic than (l) , for i t computes the absolute magnitudes of

acceleration and velocity, penalizes f o r friction in a n

elementary so r t of way (constant t imes the absolute velocity),

and penalizes for being tfwithinll o r "on11 a n "obs tac Le.

- 9-

A cost function based on computation of the absolute magni-

tude of velocity and acceleration w a s not used. The absolute

values of these quantities were used because of the difference

in computation time (about two vs. twenty o r more computation

cycles). The computation of the friction factor (e . g . -k(X +Y)

was not used because of the required additional computation

time.

o r less was necessary because of the requirements of the

M. I. T. computation center.

2 2 1/2

Keeping the program's running time to fifteen minutes

2. The Complete System

The space in which the system was to be simulated was

a flat, two dimensional region with an obstacle in the center.

The system was to s ta r t with X(0) = Y (0) = 0 f rom a start ing

point (the 1, 1 position in this investigation), mi s s the obstacle,

and stop a t the finishing point (the 10, 10 point).

is a pictorial representation of this space.

0 0

Figure 4

This model, although not very realist ic when friction,

high dimensionality, etc. must be considered, was thought

t o be adequate for this simulation. It represents a second-

o rde r self-paced system that is concerned with getting to a
finishing point, not hitting an obstacle (in this case , i t

is probably better to say "stepping on" the obstacle ra ther

than "hitting it"), and operating in an optimal manner. It

is penalized for the total acceleration (acceleration and

deceleration) it uses, for hitting the obstacle, and for not

being a t the selected stopping point.

When dealing with a specific problem and with the new

generation of computers appearing, i t should be possible to

simulate more complex systems so that more realist ic situ-

ations can be analyzed.

- 10-

Figure 4

-11-

C . The Simulation

1. Bellman's Dynamic Programing

a . Special AsDects of the P rogram

When this research was undertaken initially, i t

was thought that the only simulation method that wouid be
t needed was Bellman's dynamic programing .

constructing the algorithm for the program, i t was discovered

that the grid on which the model could be simulated would

have to be very coarse . The grid size that was used was

LOX units by LOY units by LO time units, with the minimal

gr id divisions being 1 unit in each direction.

sions imply that the minimal velocity and acceleration units

a l so must be 1. At f i r s t thought, i t would seem that the

number of grid points could be increased. The following

argument, however, will prove that there cannot be much

improvement in the dynamic programing method a t this t ime

without the use of high capacity (and moderate speed) storage

devices.

While

These divi-

The I. B. M. 7094 computer a t M. I. T. has available

to the user about 24,000 words (each of 36 bits) of high speed

storage (8 , 0 0 0 words of high speed storage a r e reserved to

maintain the system for the high speed processing of programs) .

The total available information storage is about 850 ,000 bi ts .

In o rde r to compute the t ra jector ies for a second o rde r

system, the dynamic programing algorithm requires that each

point in the space be s tored a s a function of each previous

position, velocity, and t ime.

s tore ones position in one of 100 different possibilities, and

since there a r e LOX velocities, 1OY velocities, LOX positions,

Since it takes seven bi ts to

'For the basic theory and further example of
programing, the reader should see reference

the use of dynamic
2.

-12-

' .

1OY positions and LO time u n i t s , there must be a total of

7 x 10 bits of available for information storage. This
5 leaves 1 . 5 x 10

program and all other variables.

of the coarse grid, i t was believed that some value could

be obtained f rom the model using the dynamic programing

method.

5

bits of 4, 300 words available to s tore the

In spite of the problem

There is one fundamental difference between Bellman's

dynamic programing algorithm and the dynamic programing

algorithm used in this research.

A par t of Bellman's method computes a cost , and using

this cost , computes the position to which the trajectory will

go. If this computed position is close to an allowable posi-
tion, the trajectory is required to go to that position, and

the computed cost is stored a s the cost to get to that position.

Bellman's method introduces some erTor into the cost

calculations.

a position, go to it, and calculate the cost for getting there

by one route.

of getting there by all other routes.

trajectory to that position would be chosen and stored,

the present context, this method appears to be as satisfactory

a s Bellman's estimated cost method as it calculates the exact

cost of getting to a position.

been encountered using this latter method.

The method used in this research was to pick

This cost would then be compared to the cost

Then the lowest cost

In

A s of now, no difficulties have

The systems simulated by dynamic programing methods

should not be thought of as producing truly continuous

t ra jector ies .

the fundamental step Lengths a r e 1 unit in the X dimension,

L unit in the Y dimension, and they are taken every 1 unit

of time.

The simulations a r e more Like waLking, where

The system path does go f rom point to point.

- 1 3 -

However, the system cannot exercise any control except a t

the discretly spaced grid points. Also i t i s penalized only

for stepping on (or within) the obstacle .

b . Simulation Results

Some results of this simulation a r e in Figure 5.

show several trajectories a r e shown for the time cost (TC)

equal to 1.

7 , 4 position.

These

The upper left corner of the obstacle i s a t the

In a l l ca ses , the t ra jector ies mis s the obstacle. But

one might question why they a r e not smoother.

three reasons for this phenomenon, and two a r e interrelated.

There a r e

i.

ii,

iii

the cost is a l inear sum of accelerations

wherein two acceleration units a t one

time cost the same a s one acceleration

unit a t each of the two different t imes .

in conjunction with i), there is no

constraint on power, i. e . acceleration

pe r unit t ime, for this system model.

In rea l systems, there a r e always

power constraints. If some power

constraints were introduc.ed, the

trajectories would be smoother.

the grid is very coarse .

limited the acceleration, the t ra jectory

will always have sharp corners .

No matter how

Another problem was that of severa l optimal t ra jector ies

Depending for a system operating with one penalty cr i ter ion.

on the conditions of the system, the number of optimal

trajectories found were 5, 6 , 7, o r m o r e . After some

investigation, i t was concluded that the cause of these many

optimal trajectories was the lack of a power constraint in the

model.

number of optimal t ra jector ies for a system using one

penalty cri terion would reduce to a single optimal solution.

By including a n appropriate power constraint , the

- 14-

I . *

10

9

8

7

6

5

4

3

2

1

0 x Q ! l

X

O A

X

0

X

I I I I I I I I I 1
6 7 8 9 10 1 2 3 4 5

Figure 5

The cost function is that shown in pa r t 11,
with k = 1, AT = 1.
the trajectory with TC = 1 , cost = 15.
The 0 ' s represent the trajectory with TC = 2 ,
cost = 22. The A ' s represent the trajectory
with TC = 3 , Cost = 25.

The x's represent

- 15-

.

In the process of the investigation, i t was noticed that

i f in the penalty cr i ter ion the absolute value of the acceleration

were raised to a power grea te r than one (as was done in the

previous examples), the same resu l t a s the power (acceleration

pe r time) constraint would ensue. This would l imit the number

of optimal trajectories.

2. The Local Dynamic P r o g r a m

Because of the extremely coa r se grid with which the

system had to be simulated using Bellman's dynamic programing,

i t was thought that some method should be devised which would

simulate the self-paced system using a much finer grid.

variation emphazed allows the system to be simulated using

almost as fine a grid a s is desired.

500 divisions in each of X, Y , and time spaces.

The

The present limit is about

When the local dynamic programing method was f i r s t

formulated, a grid of 49 points was placed around each of the

points on the nominal trajectory.

t ime of a 7094 program to compute an optimal path for TC = 2

and A t = 1/2 was over twelve minutes.

to reduce the running time.

points on a gr id , even though it was recognized that this a l te ra -

tion would make the program more apt to get caught in Local

minima on the cost surface.

It was found that the running

This prompted efforts

A resultant program had only nine

Because of the long running time of the program using

49 points around each nominal point, only a few trajector ies

were computed using this method.

only slightly different start ing t ra jector ies the program with

only nine grid points around each nominal point converged

on a cheaper path than the program without 49 grid point.

A l l the results mentioned subsequently will be from the

pzogram with the nine grid points around each nominal

point.

is included in Figure 6.

It was found that with

A n illustration of one of the resu l t s of this method

The resul ts of this simulation substantiated that if

appropriate precautions were taken, the grid s ize could be

- 16-

10

9

8

7

6

5

4

3

2

1

X
X

xx

X X
X

X
X

X
X

X
X

X
x

X
x

X
X

I I 1 1 I 1 I I I I
2 3 4 5 6 7 8 9 10 1

TC = 1, AT = 1/4, Cost = 14 .25

Figure 6

- 17-

,

decreased. The major problem to be overcome for this system

model was that when a short trajectory (i. e. few steps) wa5 used

a s the initial nominal t ra jectory in the program, the program was

trapped in a local minimum on the cost surface and produced a

non-optimaL path. Optimal t ra jector ies (or a t least much lower

cost trajectories) were successfully computed when long nominal

trajectories were input to the program.

At f i rs t i t was hoped that the problem of getting

trapped in the Local minima a programing e r r o r and not

by the presence of minima in the cost space. The program,

however, if operating in a flat cost space, tended to lengthen

the trajectory, not shorten it.

if one attempted to approach the minimum cost t ra jectory

from the direction of a short nominal trajectory, the system

would tend to get trapped in a local minimum.

cost trajectory was approached from the direction of a long

nominal trajectory, the system would tend to find the true

minimum cost (or a t least a lower cost) trajectory.

Thus i t was concluded that

If the minimum

D. The Gradient Method of Simulation

The gradient method of analysis and simulation was

attempted in order to t ry to decrease the computing time

required for the f i r s t two methods and to give increased

trajectory resolution. The theoretical basis for this method

and a general description of the mechanics of the method can

be found in reference 7.

When the gradient method was f i r s t considered, i t was

thought that the system model could be simulated a s i t was

defined in P a r t 11, equation I.
realize that a gradient method would not work in a cost

space that has vertical regions (i. e. infinite gradients).

The system was changed to make the ver t ical regions have

finite slopes.

gradients in the region, and the program, it was thought,

should have been able to find a minimum cost path.

Little thought was needed to

This eliminated any infinite o r undefined

- 18-

The method did not work, and the ahthor convinced

himself that no gradient method could eve r produce an

optimal t ra jectory (excepting some kind of accident) in the

cost space defined in Part 11.
gradient method would not be of much help in finding optimal

solutions of cost functions of the type of concern in this report .

This is because of the terminal conditions used with this

particular cost function.

i f self-paced systems were to be investigated, then a cost

function which is suitable to the gradient analysis technique

should be used.

function i s the t e rm penalizing the system for requiring an

extra step or a n extra unit of time to satisfy the termina1

conditions.

It was concluded that the

The conclusions were drawn that

Of particular importance in the cost

In the interest of discovering i f the gradient techniques

could be used for simulating some self-paced systems, a

system model was developed which has a tuo dimensional (X

and Y) cone for the obstacle (the cone has its vertex pointing

upward), and a four dimensional (X, Y, VX, and VY) cone

(with i t s vertex pointing downward), for the stopping

condition.

and does not extend down beyond COST=O

The obstacle cone has a height of 50 cost units,

(The equations
for this cone are: COST = 50-k y+- X tY , and i f COST i s

negative, then COST is se t equal to 0.)

stopping condition covers the entire space.

The cone for the

A program was written to simulate the model. It has

LOO time divisions and extremely fine divisions in the X and

Y space (significant to eight digits).

this computation a r e not included in the resul ts section,

but sketches of an input t ra jectory and the t ra jectory that

the program had computed a t the end of five minutes of

computing time a r e included in Figure 7.

the program was terminated because the maximum running

t ime had been exceeded; pr ior to stopping, the program had

not indicated that the output t ra jectory was optimal.)

The actual resul ts of

(Execution of

- 19-

. t

Sketch of the input t ra jectory (dashed Line) and
the output trajectory (solid Line) of the Gradient
Program.

3

-7 --- F-

2 3 4 5 6 7 8 9 !O 1

10

9

8

7

6

5

4

3

2

1

Figure 7

-20-

t 0

111. CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE STUDY

The rssu l t s of the simulations using dynamic programing

a r e satisfactory.

systems can be simulated, and that the resulting t ra jector ies

will have relevance to the r ea l t ra jector ies i f the system

to be simulated i s defined with certain rest r ic t ions.

l a rger and fas te r computers a r e available, o r when much

higher capacity, moderate speed storage and a n abundance

of computing time (on the order of severa l hours) pe r r u n

is pract ical , bet ter estimates of the behavior of general

optimally self-paced second (and higher) order systems can

be made.

They indicate that optimal self-paced

When

At this t ime, for investigators attempting to optimize

high order continuous systems, the procedure using the local

gradient technique will probably produce satisfactory resul ts .

The gradient method of analysis will not a id in the

computation of optimal trajectories for the self-paced systems

used in this research (i. e

conditions. Fo r the type of systems described in the section

dealing with the gradient method of analysis and many others,

the gradient method will compute optimal t ra jector ies .

with the s t r ic t ly defined terminal

Some of the resul ts of this report sh'ould be immediately

useful to investigators attempting to compare human performance

to optimal self-paced systems.

be considered to be very much like the program task.

Certain human tasks can

-21-

NOTATION LIST FOR CHAPTER I1

t =

T =

N =

x =
Y =
x =
Y =
vx =
V Y =

x =
Y =
P C =

TC =

the total cost

an index of summation

the minimal difference between two points on the time

grid

the running t ime. Generally, t = n xAt

the time a t which the end conditions a re satisfied

the total number of summations, generally N =

one of the dimensions of a two space region

one of the dimensions of a two space region

velocity in the X direction

velocity in the Y direction

X

Y
acceleration in the X direction

acceleration in the Y direction

a cost incurred whenever the system is within a 'Icost

zone" o r obstacle.

a cost incurred whenever the end conditions a r e not

satisfied, (i. e . whenever the system is not stopped

a t the preselected stopping point.)

T b t

- 2 2 -

BIB LIOGRA PHY

1. Hardin, Philip A . , Simulation and Analysis of Self-
Paced Second Order Control Systems. M. S. Thesis,
M. I. T . .

2 . Bott, Beranek and Newman Inc. , Report no. L335, Job.
no. 11 164, "Vehicle Control Behaviour and Driver
Information Processing, January 7, 1966.

3. Bellman, R. E. , and S. E. Dreyfus, Applied Dynamic
Programing, Princeton: Princeton University P r e s s ,
1962.

4. Hildebrand, F. B. , Advanced Calculus for Applications,
Englewood Cliffs: Prentice-Hall, Inc. , 1962.

5. Tou, J. T . , Modern Control Theory, New York: McGraw-
Hill Book Company, 1964.

6. Gibson, J. E . , Nonlinear Automatic Control, New York:
McGraw-Hill Book Company, 1963.

7. Leitmann, George, Optimization Techniques, - New York:
Academic P r e s s , 1 9 6 2 .

-23-

